×
Deep Learning illustriert
Eine anschauliche Einführung in Machine Vision, Natural Language Processing und Bilderzeugung für Programmierer und Datenanalysten
von Jon Krohn, Grant Beyleveld und Aglaé Bassens, aus dem Englischen übersetzt von Kathrin LichtenbergDeep Learning begreifen und einsetzen
Einführung in verwandte Themen wie Künstliche Intelligenz, Machine Learning und Neuronale Netze viele Illustrationen, verständlich erklärt begleitendes online-Material zum Ausprobieren der Erläuterungen aus dem Buch (Jupyter-Notebooks) Vorstellung von Bibliotheken (Tensor Flow/Keras, PyTorch)
Deep Learning verändert unseren Alltag. Dieser Ansatz für maschinelles Lernen erzielt bahnbrechende Ergebnisse in einigen der bekanntesten Anwendungen von heute, in Unternehmen von Google bis Tesla, Facebook bis Apple. Tausende von technischen Fachkräften und Studenten wollen seine Möglichkeiten einsetzen, aber frühere Bücher über Deep Learning waren oft nicht intuitiv, unzugänglich und trocken. John Krohn, Grant Beylefeld und Aglaé Bassens bieten Ihnen eine einzigartige visuelle, intuitive und verständliche Einführung in Techniken und Anwendungen von Deep Learning. Mit den farbenfrohen Illustrationen und eingängigen Erläuterungen von „Deep Learning illustriert“ gelingt Ihnen ein einfacher Zugang zum Aufbau von Deep-Learning-Modellen, und bringt ihnen beim Lernen mehr Spaß.
Der erste Teil des Buches erklärt, was Deep Learning ist, warum es so allgegenwärtig geworden ist und wie es mit Konzepten und Terminologien wie künstlicher Intelligenz, Machine Learning oder künstlichen neuronalen Netzen interagiert. Dabei verwenden die Autoren leicht verständliche Analogien, lebendige Grafiken und viele Beispiele.
Auf dieser Grundlage präsentieren die Autoren eine praktische Referenz und ein Tutorial zur Anwendung eines breiten Spektrums bewährter Techniken des Deep Learning. Die wesentliche Theorie wird mit so wenig Mathematik wie möglich behandelt und mit praktischem Python-Code beleuchtet. Praktische Beispiele zum Ausprobieren, die kostenfrei online verfügbar sind (Jupyter-Notebooks), machen Ihnen die Theorie begreiflich. So erlangen Sie ein pragmatisches Verständnis aller wichtigen Deep-Learning-Ansätze und ihrer Anwendungen: Machine Vision, Natural Language Processing, Bilderzeugung und Spielalgorithmen.
Um Ihnen zu helfen, mehr in kürzerer Zeit zu erreichen, stellen die Autoren mehrere der heute am weitesten verbreiteten und innovativsten Deep-Learning-Bibliotheken vor, darunter:
Einführung in verwandte Themen wie Künstliche Intelligenz, Machine Learning und Neuronale Netze viele Illustrationen, verständlich erklärt begleitendes online-Material zum Ausprobieren der Erläuterungen aus dem Buch (Jupyter-Notebooks) Vorstellung von Bibliotheken (Tensor Flow/Keras, PyTorch)
Deep Learning verändert unseren Alltag. Dieser Ansatz für maschinelles Lernen erzielt bahnbrechende Ergebnisse in einigen der bekanntesten Anwendungen von heute, in Unternehmen von Google bis Tesla, Facebook bis Apple. Tausende von technischen Fachkräften und Studenten wollen seine Möglichkeiten einsetzen, aber frühere Bücher über Deep Learning waren oft nicht intuitiv, unzugänglich und trocken. John Krohn, Grant Beylefeld und Aglaé Bassens bieten Ihnen eine einzigartige visuelle, intuitive und verständliche Einführung in Techniken und Anwendungen von Deep Learning. Mit den farbenfrohen Illustrationen und eingängigen Erläuterungen von „Deep Learning illustriert“ gelingt Ihnen ein einfacher Zugang zum Aufbau von Deep-Learning-Modellen, und bringt ihnen beim Lernen mehr Spaß.
Der erste Teil des Buches erklärt, was Deep Learning ist, warum es so allgegenwärtig geworden ist und wie es mit Konzepten und Terminologien wie künstlicher Intelligenz, Machine Learning oder künstlichen neuronalen Netzen interagiert. Dabei verwenden die Autoren leicht verständliche Analogien, lebendige Grafiken und viele Beispiele.
Auf dieser Grundlage präsentieren die Autoren eine praktische Referenz und ein Tutorial zur Anwendung eines breiten Spektrums bewährter Techniken des Deep Learning. Die wesentliche Theorie wird mit so wenig Mathematik wie möglich behandelt und mit praktischem Python-Code beleuchtet. Praktische Beispiele zum Ausprobieren, die kostenfrei online verfügbar sind (Jupyter-Notebooks), machen Ihnen die Theorie begreiflich. So erlangen Sie ein pragmatisches Verständnis aller wichtigen Deep-Learning-Ansätze und ihrer Anwendungen: Machine Vision, Natural Language Processing, Bilderzeugung und Spielalgorithmen.
Um Ihnen zu helfen, mehr in kürzerer Zeit zu erreichen, stellen die Autoren mehrere der heute am weitesten verbreiteten und innovativsten Deep-Learning-Bibliotheken vor, darunter: