„Wer die Zeit und Muße hat, seine statistischen Kenntnisse zu vertiefen oder zu erweitern, dem sei dieses Buch ausdrücklich ans Herz gelegt.“
Krankenhauspharmazie (01.12.2016)
„Fazit: Empfehlenswert.“
Einschlag (15.06.2016)
„Das vorliegende Werk bietet nun empirisch arbeitenden und zugleich an der Begründung der Methoden interessierten Mathematikern wie Natur- und Ingenieurwissenschaftlern eine umfassende Darstellung der aktuellen statistischen Auswertungsverfahren mitsamt Theorie unter besonderer Berücksichtigung der zugrundeliegenden Versuchsplanung.“
ekz. bibliotheksservice (15.02.2016)
„An eternal challenge for authors of statistics textbooks is to establish a credible relationship between data = the real world and the abstract concepts from which the mathematical theory of statistics evolves. The present book does this better than most. Its presumed audience are graduate students (with a good knowledge of probability) in natural sciences, engineering, but also mathematics. [...]“
Walter Krämer, Statistical Papers (10.02.2016)
Mathematische Statistik
Für Mathematiker, Natur- und Ingenieurwissenschaftler
von Dieter Rasch und Dieter Schott„Mathematische Statistik“ hat wegen des großen Anwendungsbedarfes stetig an Attraktivität gewonnen - und auch theoretisch sind neue Ansätze entwickelt worden. Ein besonderer Schwerpunkt liegt auf der Versuchsplanung, die häufig gegenüber der Auswertung vernachlässigt wird.
Unter konsequenter Berücksichtigung der Entwicklungen der letzten Jahrzehnte ist ein neues Buch entstanden. Kenntnisse in der Maßtheorie und der Wahrscheinlichkeitsrechnung sind hilfreich, aber nicht notwendig, da die Autoren die Materie leicht verständlich beschrieben haben.
Ein Schwerpunkt liegt auf der Versuchsplanung, die zu oft vernachlässigt wird und oft neben der Auswertung benachteiligt ist. Konsequenterweise nimmt in diesem Buch die Planung des Stichprobenumfangs und die Beschreibung von Versuchsanlagen einen großen Raum ein - immer eingebettet in die passenden Auswertungsverfahren wie die Varianz- und Regressionsanalyse.
Ein Muss für alle Natur- und Ingenieurwissenschaftler, die empirisch arbeiten und daneben auch an der Begründung der Methoden interessiert sind.