Pythagoreische Zahlentripel von Lothar Selle | Kleines Handbuch | ISBN 9783734741043

Pythagoreische Zahlentripel

Kleines Handbuch

von Lothar Selle
Buchcover Pythagoreische Zahlentripel | Lothar Selle | EAN 9783734741043 | ISBN 3-7347-4104-1 | ISBN 978-3-7347-4104-3

Pythagoreische Zahlentripel

Kleines Handbuch

von Lothar Selle
Untersuchung der Verteilung von teilerfremden pythagoreischen Tripeln natürlicher Zahlen (a² + b² = c²) bei Sortierung nach Größe der geraden Kathete a, der ungeraden Kathete b bzw. der Hypotenuse c.
Die Dokumentation basiert
für a-Sortierung auf den ersten 13.295.908 Tripeln (a <= 8.388.607, b <= 35.184.363.700.224),
für b-Sortierung auf den ersten 123.486.207 Tripeln (b <= 67.108.864, a <= 1.125.899.906.842.623) und
für c-Sortierung auf den ersten 5.632.362.270 Tripeln:
8 Formelvarianten für die Berechnung von Tripeln;
Einschränkungen für die Primfaktoren von Hypotenusen,
Aussagen zu den Primfaktoren der Katheten;
Untersuchung von Tripeln, deren Katheten bezüglich ihrer Primfaktoren eingeschränkt sind,
die Abstände benachbarter Tripel bzgl. der Länge von Katheten bzw. Hypotenusen;
(schulmathematischer) Beweis für die Gleichheit der Grenzwerte von a- und b-sortierten Listen,
die möglichen äquidistanten Gruppierungen (Duos, Trios, Quartette, Quintette, Sextette, ...),
die möglichen Abstände von Gruppierungen in Abhängigkeit von der Gruppenlänge,
die möglichen Clustergrößen (Zwillinge, Vierlinge, Achtlinge, 16er-Cluster, 32er-Cluster, ...),
Gesetzmäßigkeiten für die Anzahl der unterschiedlichen Primfaktoren der Tripel-Seiten von Gruppierungen,
Zusammenhang zwischen den Primfaktoren einer Tripelseite und den möglichen Clustergrößen;
erstes Tripel mit einem bestimmten Abstand zum vorhergehenden,
erste äquidistante Gruppierung von bestimmter Länge und bestimmtem Abstand,
erster Cluster einer bestimmten Länge,
Anzahl bestimmter äquidistanter Gruppierungen,
Anzahl der Cluster einer bestimmten Länge;
clusterfreie Tripel-Listen;
Untersuchung von Tripeln, in denen eine Seite einen vorgegebenen Teiler hat;
Häufigkeit von Primfaktoren der Tripelseiten;
Untersuchung von verschiedenen geometrischen Besonderheiten.
Grenzwertschätzungen empirisch durch Kurvenanpassung.
5. Aufl. überarbeitet und ergänzt (14 weitere Grenzwertschätzungen); A5, 423 Seiten.
17 Seiten Sachwortregister (2-spaltig), 30 sw-Abb., 9 col-Abb., 236 Tabellen, 294 Grafiken, 45 Tripel-Eigenschaften, 124 Lemmata und 24 Sätze.